
JOURNAL OF COMPUTATIONAL PHYSICS 77, 270-275 (1988)

Note

New Software for Large Dense Symmetric
Generalized Eigenvalue Problems

Using Secondary Storage*

1. INTR~OUCTION

Quantum mechanical bandstructure computations require repeated computation
of a large number of eigenvalues of a symmetric generalized eigenproblem. In
previous work of the authors [7] the application of a block Lanczos algorithm,
and a modification of the packed EISPACK [S, 121 routines, have been considered
for the numerical solution of such eigenvalue problems arising in the theoretical
calculation of pressure and volume at metallization of BaTe (see [141). Both
approaches were limited in the size of problem, which could be handled by the
existing software. The largest feasible problem for each method on a 4 Mword Cray
X-MP/24 was about of the order of 1900. Here we report numerical results with
some new software, which has been developed recently. This software permits the
user to fully utilize a fast secondary storage device such as the SSD. On a
128 Mword SSD now the solution of generalized eigenvalue problems of order up
to 8000 is feasible. In this note we give a brief summary of the new software and
present some performance results and a comparison with the results in [7].

We consider algorithms for the efficient solution of the symmetric generalized
eigenproblem

AX= BXA. (1)

The new software provides a true out-of-core implementation of some standard
routines from EISPACK. The approach is to first reduce (1) to standard form by
applying the Cholesky factor L of B as

or

where

CY= Y/i,

C=L-‘AL-T

Y= LTX.

(2)

(3)

* This work is supported through NSF Grant ASC-8519354

270
0021-9991/88 83.00
Copyright 0 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SOFTWAREFOREIGENVALUE PROBLEMS 271

The matrix B is factored using the block Cholesky algorithm where B is initially
stored in secondary storage and is overwritten with its factor L [6, 13 J.

The next step in the standard EISPACK approach would be to reduce C to
tridiagonal form using a sequence of Householder transformations. The application
of Householder transformations to reduce C to tridiagonal form requires access to
all of the unreduced portion of C for the reduction of each column. This access
requirement would incur O(n’) I/O transfers. This amount of Z/O is too high for an
out-of-core implementation, since it would effectively limit the efficiency of the
algorithm by the transfer speed to and from secondary storage.

Instead a block Householder transformation is used to reduce C to a band
matrix, where the band matrix will have small enough bandwidth to be held in cen-
tral memory. This reduction is accomplished by first symmetrically partitioning the
matrix C into equal sized blocks with maximum block size p. Then for each block
column we compute the QR factorization of the matrix comprised of the blocks
which are below the diagonal block. The product of Householder transformations
used to compute the QR factorization is accumulated in the WY representation
described in [11. This representation is then applied simultaneously to the left and
the right of the remainder of the matrix. When all block columns except the last is
reduced in this fashion, the result is a band matrix with bandwith p which is similar
to the matrix C in (2). The Z/O requirements of the block Householder transfor-
mation are of O(n3/p). Hence for any reasonable block size, the performance of the
algorithm will no longer be Z/O bound.

The banded eigenproblem is then transformed to tridiagonal form using an
enhanced version of EISPACK subroutine BANDR. Finally EISPACK subroutine
TQLRAT is used to compute the eigenvalues. Details of the modifications to
BANDR, and a comparison of the performance of TQLRAT with a new algorithm
by Dongarra and Sorensen [3] are given in a forthcoming paper [S].

Specified eigenvectors are computed by first computing the associated eigenvec-
tors of the band matrix and then back transforming them to Y using the
accumulated block Householder transformations. Application of L to Y back trans-
forms Y to X, the eigenvectors of the original problem (1). The eigenvectors of the
band matrix are computed using inverse iteration implemented in a much modified
version of EISPACK subroutine BANDV.

This algorithm has been implemented in a pair of subroutines HSSXGV and
HSSXGl which, respectively, compute the eigenvalues and a specified set of eigen-
vectors of (1). The usage of these two subroutines as well as subroutines HSSXEV
and HSSXEl, which compute the eigenvalues and specified eigenvectors of (2), is
described in [9].

2. RESOURCE-REQUIREMENTS

The new software makes extensive use of both the central processing unit and
secondary storage of a computer. This section will discuss the requirements of the

272 GRIMES AND SIMON

algorithm for secondary storage, amount of I/O transfer between central memory
and secondary storage, storage requirements for central memory, and the number
of floating point operations.

Scondary storage for this algorithm is used to hold B which is overwritten with
L, to hold A which is overwritten with C and later the band matrix, and to hold the
matrices Wand Y. Approximately n2/2 storage is used for each of the four matrices,
thus the total amount of secondary storage required is approximately 2n2. A Solid-
State Storage Device (SSD) with 128 million words secondary storage with fast
access on a Cray X-MP would allow problems of order up to 8000 before overflow-
ing the SSD to slower secondary storage on disks.

The amount of I/O transfer between central memory and secondary storage stor-
ing the matrices A, C and the resulting band matrix is ((7/4) n3)/p real words. The
Z/O transfer for the unit storing L, the Cholesky factor of B, is n’/p. The total
amount of I/O transfer is ((1 l/4) n’)/p.

The maximum central memory requirements for the new algorithm is

2np + max(4p2, np + 3n + p, np + n + p(p + 1)),

where the three terms correspond to Cholesky factorization of B, reduction to
banded form, and computation of the eigenvectors. A good working estimate for
the amount of central memory required is 3np. For the size of problems being
considered (e.g., n = 5000 and p = 50) this is less than one million words of working
storage.

The operation count for computing the eigenvalues of the eigenproblem in (1) by
this approach is approximately (1 l/3) n3 + 10n2p + lower order terms. This
operation count comes from analyzing the 4 major components of the algorithm.
The operation counts for these components are as follows:

Component Operation Count

Cholesky factorization in3
Reduction to standard form 2n3
Block Householder transformations $z3 + 2n2p
QR factorizations 2n2p
Reduction of band matrix 6n2p

Total +z’+ 10n2p

For an execution with n = 1492 and p = 50 the monitored operation count was
13.3 x 109. The operation count computed by the above formula is 13.2 x lo9 which
is within 1% of the actual count.

The computational kernels used in this algorithm are Cholesky factorization,
block solves with the Cholesky factor, QR factorization, matrix multiplication, and
a banded eigenvalue solver. All of these kernels except for those used in solving the
banded eigenproblem perform well on vector computers. In fact, they have com-

SOFTWARE FOR EIGENVALUE PROBLEMS 273

TABLE I

Comparison of Performance with In-core Methods (Execution Times in Seconds)

Number of HSSXGV and Block
n eigenvectors EISPACK HSSXGl Lanczos

219 22 1.37 1.07 1.37
667 32 14.73 12.33 8.25
992 35 37.33 35.38 17.00

1496 35 108.54 88.74 47.70

putational rates in the 150 to 190 megaflop range on a Cray X-MP for the problem
sizes being discussed in this application. The code is portable and can be implemen-
ted efficiently on other vector supercomputers, whenever high performance
implementation of the Level 2 BLAS [2] are available.

3. PERFORMANCE RESULTS

A parameter study for the optimal choice of blocksize, p, was performed. A
choice of 63 for the block size appears to be optimal on the Cray X-MP for the size
of problems considered here. If a large number of eigenvectors will be computed a
smaller blocksize might be in order.

Table I compared the combination of HSSXGV and HSSXGl with the perfor-
mance of the symmetric packed storage version of EISPACK and the block
Lanczos algorithm described in [7] on the same eigenproblems in that paper.
HSSXVG and HSSXGl used block size 63 for all problems. The statement of the
eigenproblem is to compute all eigenvalues and eigenvectors in the interval
[- 1 .o, 0.301.

HSSXGV and HSSXGl not only allow larger problem sizes than the symmetric

TABLE II

Comparison of HSSXGV versus Block Lanczos on Matrix of Order 992
(Execution Times in Seconds)

Number of HSSXGV and
eigenvectors HSSXGl

Block
Lanczos

20 33.77 21.20
40 35.70 20.62
60 37.78 27.02
80 39.69 30.78

100 41.32 39.35
120 43.66 53.91
140 45.58 62.35

274 GRIMESANDSIMON

TABLE III

Performance in MFLOPS

n
HSSXGV
MFLOPS

HSSGXl
MFLOPS

219 74 51
661 127 66
992 128 12

1496 161 80

packed storage EISPACK path but have an 18% performance increase because of
the block nature of the computations. Block Lanczos is indeed faster than
HSSXGV and HSSXGl for these eigenproblems. However, if more eigenvectors are
required, HSSXGV and HSSXGl is more efficient than block Lanczos. For the
problem of order n = 992 the figures in Table II indicate that HSSXGV and
HSSXGl are faster than the block Lanczos code, if the number of required eigen-
vectors is increased to more than 100. We estimate that for the largest problem
above, n = 1496, HSSXGV would become the algorithm of choice if 80 or more
eigenvectors are required. Also HSSXGV computes all the eigenvalues and assumes
no prior knowledge of the spectrum. Both Lanczos and the EISPACK path require
an interval as input, and proceed to compute all the eigenvalues in the interval.
Hence HSSXGV in Table III has computed additional information.

The overall computational rate for the problems in Table I is given in Table III.
The highest performance with 161 MFLOPS was obtained on the largest problem.
This number is quite remarkable since a significant amount of computation in the
tridiagonal eigensolver is carried out in scalar mode. Assuming this computational
rate the new software should be able to compute all the eigenvalues of an 8000 by
8000 dense generalized eigenvalue problem in about 3.3 hours on a Cray X-MP/24
with 128 Mword SSD.

4. SUMMARY

Software for the out-of-core solution of the symmetric generalized eigenproblem
has been developed and implemented. Because of its block nature, this software is
more efficient on vector computers than a related in-core algorithm. If the number
of required eigenpairs is large, in particular in applications, where all eigenvalues
and vectors are required, the new software is more efficient than a previous code of
the authors [7] based on the Lanczos algorithm. Most importantly, the new
software allows efficient solution of problems too large to fit in central memory thus
providing an important computational tool to the researches in quantum mechanics
and other disciplines which generate large symmetric generalized eigenproblems.

A final word of caution: we have provided a convenient tool for finding all eigen-

SOFTWARE FOR EIGENVALUE PROBLEMS 275

values and eigenvectors of very large matrices. In many applications that we are
aware of [4, 10, 11, 141 eigenvalues and vectors are only intermediate quantities in
the computation. Sometimes the calculation of these intermediate quantities can be
avoided altogether (see [11 I). We encourage every potential user of our software to
spend the extra time for analysis in order to evaluate whether the computation of
the eigenvectors of a 10,000 x 10,000 matrix is really required.

REFERENCES

1. C. BISHOF AND C. VANLOAN, SIAM J. Sci. Stat. Comput. 8, s2 (1987).
2. J. J. DONGARRA, J. Du CROZ, S. HAMMARLING, AND R. HANSON, “Extended Set of Fortran Basic

Linear Algebra Subprograms,” Argonne National Laboratory Report ANL-MSC-TM-41
(Revision 3), 1986 (unpublished).

3. J. J. DONGARRA AND D. C. SORENSON, SIAM J. Sri. Stat. Compur. 8, ~139 (1987).
4. A. J. FREEMAN, “All-electron density approach to the electronic structure at surfaces and interfaces,”

Report, Dept. of Physics, Northwestern University, Evanston, Illinois, 1986 (unpublished).
5. B. GARBOW, J. M. BOYLE, J. J. D~NGARRA, AND C. MOLER, “Matrix Eigensystem Routines -

EISPACK Guide Extension,” Lecture Notes in Computer Sciences, Vol. 51 (Springer-Verlag, Berlin,
1977).

6. R. GRIMES, “Solving Systems of Large Dense Linear Equations,” J. Supercomput. 1987 (to appear).
7. R. GRIMES, H. KRAKAUER, J. LEWIS, H. SIMON, AND S. WEI, J. Compur. Phys. 69, 471 (1987).
8. R. GRIMES AND H. SIMON, “Solution of Large Dense Symmetric Generalized Eigenvalue Problems

Using Secondary Storage,” ACM Trans. Math. Software, (to appear).
9. R. GRIMES AND H. SIMON, “Subroutines for the Out-of-core Solution of Generalized Symmetric

Eigenvalue Problem,” Report ETA-TR-54, Boeing Computer Services, Seattle, 1987 (unpublished).
10. A. NAUTS AND R. E. WYATT, Phys. Rev. Lett. 51, 2238 (1983).
11. A. NAUTS AND R. E. WYATT, Phys. Rev. A 30, 872 (1984).
12. B. T. SMITH, J. M. BOYLE, J. J. DONGARRA, B. S. GARBOW, Y. IKEBE, V. KLEMA, AND C. B. MOLER,

“Matrix Eigensystem Routines - EISPACK Guide,” Lecture Notes in Computer Sciences, Vol. 6
(Springer-Verlag, Berlin, 1976).

13. VectorPak Users Manual, Boeing Computer Services Document No. 20460-0501011 (1987).
14. S. H. WEI AND H. KRAKAUER, Phys. Rev. Lett. 55, 1200 (1985).

RECEIVED: May 22, 1987; REVISED: September 16, 1987

ROGER G. GRIMES
HORST D. SIMON+

Boeing Computer Services,
Engineering Technology Applications Division, ’

P. 0. Box 24346, MJS 7L-21,
Seattle, Washington 98124-0346

+ Present address: NAS Systems Division, NASA Ames Research Center, Moffett Field, CA 94035.

581/77/I-18

