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Note 

New Software for Large Dense Symmetric 
Generalized Eigenvalue Problems 

Using Secondary Storage* 

1. INTR~OUCTION 

Quantum mechanical bandstructure computations require repeated computation 
of a large number of eigenvalues of a symmetric generalized eigenproblem. In 
previous work of the authors [7] the application of a block Lanczos algorithm, 
and a modification of the packed EISPACK [S, 121 routines, have been considered 
for the numerical solution of such eigenvalue problems arising in the theoretical 
calculation of pressure and volume at metallization of BaTe (see [ 141). Both 
approaches were limited in the size of problem, which could be handled by the 
existing software. The largest feasible problem for each method on a 4 Mword Cray 
X-MP/24 was about of the order of 1900. Here we report numerical results with 
some new software, which has been developed recently. This software permits the 
user to fully utilize a fast secondary storage device such as the SSD. On a 
128 Mword SSD now the solution of generalized eigenvalue problems of order up 
to 8000 is feasible. In this note we give a brief summary of the new software and 
present some performance results and a comparison with the results in [7]. 

We consider algorithms for the efficient solution of the symmetric generalized 
eigenproblem 

AX= BXA. (1) 

The new software provides a true out-of-core implementation of some standard 
routines from EISPACK. The approach is to first reduce (1) to standard form by 
applying the Cholesky factor L of B as 

or 

where 

CY= Y/i, 

C=L-‘AL-T 

Y= LTX. 

(2) 

(3) 
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The matrix B is factored using the block Cholesky algorithm where B is initially 
stored in secondary storage and is overwritten with its factor L [6, 13 J. 

The next step in the standard EISPACK approach would be to reduce C to 
tridiagonal form using a sequence of Householder transformations. The application 
of Householder transformations to reduce C to tridiagonal form requires access to 
all of the unreduced portion of C for the reduction of each column. This access 
requirement would incur O(n’) I/O transfers. This amount of Z/O is too high for an 
out-of-core implementation, since it would effectively limit the efficiency of the 
algorithm by the transfer speed to and from secondary storage. 

Instead a block Householder transformation is used to reduce C to a band 
matrix, where the band matrix will have small enough bandwidth to be held in cen- 
tral memory. This reduction is accomplished by first symmetrically partitioning the 
matrix C into equal sized blocks with maximum block size p. Then for each block 
column we compute the QR factorization of the matrix comprised of the blocks 
which are below the diagonal block. The product of Householder transformations 
used to compute the QR factorization is accumulated in the WY representation 
described in [ 11. This representation is then applied simultaneously to the left and 
the right of the remainder of the matrix. When all block columns except the last is 
reduced in this fashion, the result is a band matrix with bandwith p which is similar 
to the matrix C in (2). The Z/O requirements of the block Householder transfor- 
mation are of O(n3/p). Hence for any reasonable block size, the performance of the 
algorithm will no longer be Z/O bound. 

The banded eigenproblem is then transformed to tridiagonal form using an 
enhanced version of EISPACK subroutine BANDR. Finally EISPACK subroutine 
TQLRAT is used to compute the eigenvalues. Details of the modifications to 
BANDR, and a comparison of the performance of TQLRAT with a new algorithm 
by Dongarra and Sorensen [3] are given in a forthcoming paper [S]. 

Specified eigenvectors are computed by first computing the associated eigenvec- 
tors of the band matrix and then back transforming them to Y using the 
accumulated block Householder transformations. Application of L to Y back trans- 
forms Y to X, the eigenvectors of the original problem (1). The eigenvectors of the 
band matrix are computed using inverse iteration implemented in a much modified 
version of EISPACK subroutine BANDV. 

This algorithm has been implemented in a pair of subroutines HSSXGV and 
HSSXGl which, respectively, compute the eigenvalues and a specified set of eigen- 
vectors of (1). The usage of these two subroutines as well as subroutines HSSXEV 
and HSSXEl, which compute the eigenvalues and specified eigenvectors of (2), is 
described in [9]. 

2. RESOURCE-REQUIREMENTS 

The new software makes extensive use of both the central processing unit and 
secondary storage of a computer. This section will discuss the requirements of the 
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algorithm for secondary storage, amount of I/O transfer between central memory 
and secondary storage, storage requirements for central memory, and the number 
of floating point operations. 

Scondary storage for this algorithm is used to hold B which is overwritten with 
L, to hold A which is overwritten with C and later the band matrix, and to hold the 
matrices Wand Y. Approximately n2/2 storage is used for each of the four matrices, 
thus the total amount of secondary storage required is approximately 2n2. A Solid- 
State Storage Device (SSD) with 128 million words secondary storage with fast 
access on a Cray X-MP would allow problems of order up to 8000 before overflow- 
ing the SSD to slower secondary storage on disks. 

The amount of I/O transfer between central memory and secondary storage stor- 
ing the matrices A, C and the resulting band matrix is ((7/4) n3)/p real words. The 
Z/O transfer for the unit storing L, the Cholesky factor of B, is n’/p. The total 
amount of I/O transfer is (( 1 l/4) n’)/p. 

The maximum central memory requirements for the new algorithm is 

2np + max(4p2, np + 3n + p, np + n + p( p + 1 )), 

where the three terms correspond to Cholesky factorization of B, reduction to 
banded form, and computation of the eigenvectors. A good working estimate for 
the amount of central memory required is 3np. For the size of problems being 
considered (e.g., n = 5000 and p = 50) this is less than one million words of working 
storage. 

The operation count for computing the eigenvalues of the eigenproblem in (1) by 
this approach is approximately (1 l/3) n3 + 10n2p + lower order terms. This 
operation count comes from analyzing the 4 major components of the algorithm. 
The operation counts for these components are as follows: 

Component Operation Count 

Cholesky factorization in3 
Reduction to standard form 2n3 
Block Householder transformations $z3 + 2n2p 
QR factorizations 2n2p 
Reduction of band matrix 6n2p 

Total +z’+ 10n2p 

For an execution with n = 1492 and p = 50 the monitored operation count was 
13.3 x 109. The operation count computed by the above formula is 13.2 x lo9 which 
is within 1% of the actual count. 

The computational kernels used in this algorithm are Cholesky factorization, 
block solves with the Cholesky factor, QR factorization, matrix multiplication, and 
a banded eigenvalue solver. All of these kernels except for those used in solving the 
banded eigenproblem perform well on vector computers. In fact, they have com- 
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TABLE I 

Comparison of Performance with In-core Methods (Execution Times in Seconds) 

Number of HSSXGV and Block 
n eigenvectors EISPACK HSSXGl Lanczos 

219 22 1.37 1.07 1.37 
667 32 14.73 12.33 8.25 
992 35 37.33 35.38 17.00 

1496 35 108.54 88.74 47.70 

putational rates in the 150 to 190 megaflop range on a Cray X-MP for the problem 
sizes being discussed in this application. The code is portable and can be implemen- 
ted efficiently on other vector supercomputers, whenever high performance 
implementation of the Level 2 BLAS [2] are available. 

3. PERFORMANCE RESULTS 

A parameter study for the optimal choice of blocksize, p, was performed. A 
choice of 63 for the block size appears to be optimal on the Cray X-MP for the size 
of problems considered here. If a large number of eigenvectors will be computed a 
smaller blocksize might be in order. 

Table I compared the combination of HSSXGV and HSSXGl with the perfor- 
mance of the symmetric packed storage version of EISPACK and the block 
Lanczos algorithm described in [7] on the same eigenproblems in that paper. 
HSSXVG and HSSXGl used block size 63 for all problems. The statement of the 
eigenproblem is to compute all eigenvalues and eigenvectors in the interval 
[ - 1 .o, 0.301. 

HSSXGV and HSSXGl not only allow larger problem sizes than the symmetric 

TABLE II 

Comparison of HSSXGV versus Block Lanczos on Matrix of Order 992 
(Execution Times in Seconds) 

Number of HSSXGV and 
eigenvectors HSSXGl 

Block 
Lanczos 

20 33.77 21.20 
40 35.70 20.62 
60 37.78 27.02 
80 39.69 30.78 

100 41.32 39.35 
120 43.66 53.91 
140 45.58 62.35 
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TABLE III 

Performance in MFLOPS 

n 
HSSXGV 
MFLOPS 

HSSGXl 
MFLOPS 

219 74 51 
661 127 66 
992 128 12 

1496 161 80 

packed storage EISPACK path but have an 18% performance increase because of 
the block nature of the computations. Block Lanczos is indeed faster than 
HSSXGV and HSSXGl for these eigenproblems. However, if more eigenvectors are 
required, HSSXGV and HSSXGl is more efficient than block Lanczos. For the 
problem of order n = 992 the figures in Table II indicate that HSSXGV and 
HSSXGl are faster than the block Lanczos code, if the number of required eigen- 
vectors is increased to more than 100. We estimate that for the largest problem 
above, n = 1496, HSSXGV would become the algorithm of choice if 80 or more 
eigenvectors are required. Also HSSXGV computes all the eigenvalues and assumes 
no prior knowledge of the spectrum. Both Lanczos and the EISPACK path require 
an interval as input, and proceed to compute all the eigenvalues in the interval. 
Hence HSSXGV in Table III has computed additional information. 

The overall computational rate for the problems in Table I is given in Table III. 
The highest performance with 161 MFLOPS was obtained on the largest problem. 
This number is quite remarkable since a significant amount of computation in the 
tridiagonal eigensolver is carried out in scalar mode. Assuming this computational 
rate the new software should be able to compute all the eigenvalues of an 8000 by 
8000 dense generalized eigenvalue problem in about 3.3 hours on a Cray X-MP/24 
with 128 Mword SSD. 

4. SUMMARY 

Software for the out-of-core solution of the symmetric generalized eigenproblem 
has been developed and implemented. Because of its block nature, this software is 
more efficient on vector computers than a related in-core algorithm. If the number 
of required eigenpairs is large, in particular in applications, where all eigenvalues 
and vectors are required, the new software is more efficient than a previous code of 
the authors [7] based on the Lanczos algorithm. Most importantly, the new 
software allows efficient solution of problems too large to fit in central memory thus 
providing an important computational tool to the researches in quantum mechanics 
and other disciplines which generate large symmetric generalized eigenproblems. 

A final word of caution: we have provided a convenient tool for finding all eigen- 
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values and eigenvectors of very large matrices. In many applications that we are 
aware of [4, 10, 11, 141 eigenvalues and vectors are only intermediate quantities in 
the computation. Sometimes the calculation of these intermediate quantities can be 
avoided altogether (see [ 11 I). We encourage every potential user of our software to 
spend the extra time for analysis in order to evaluate whether the computation of 
the eigenvectors of a 10,000 x 10,000 matrix is really required. 
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